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Term paper
• At the beginning of the class we were talking 

about the requirements of the paper and a bit 
about how to write it

• I hope you have studied it carefully: 

http://www.sv.ntnu.no/iss/Erling.Berge/2010%20S
OS3003%20SemOppgKravEN201001.pdf

• Deadline for paper: 10 May

• Delivery by e-mail to 
<ISSInnlevering@svt.ntnu.no>
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Term paper
• The term paper shall be an independent work demonstrating 

how multiple regression can be used to analyze a social 
science problem. The paper should be written as a journal 
article, but with more detailed documentation of data and 
analysis, for example by means of appendices. 

• Based on information about the dependent variable a short 
theoretical discussion of possible causal mechanisms 
explaining some of the variation in the dependent variable is 
presented. This leads up to a model formulation and 
operationalisation of possible causal variables taken from the 
data set. If missing data on one or more variables causes 
one or more cases to be dropped from the analysis, the 
selection problem must be discussed. 

• By means of multiple regression (OLS or Logistic) the model 
should be estimated and the results discussed in relation to 
the initial theoretical discussion

• More details will be available in a separate paper
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Step 1: Dependent variable 

• Investigate the distribution of cases on the 
dependent variable
– Think about what mechanisms may generate 

high or low variable values for particular 
cases 

– Make a list of such mechanisms

– Can you find information on these 
mechanisms in the data?

– Make suitable variables of those you find
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Step 2 Types of research problems

• The dependent variable will usually be either an 
– Indicator of obtained status of some kind (education 

level, marriage status) 

– Indicator of activity of some kind (work, industry, 
leisure activity, voting behaviour)

– Indicator of strength of attitude or belief of some kind 
(political preferences, trust, type of entertainment)

• The problem of modelling the variation is 
different for the different types of variables
– They will have different causal structures  

Spring 2010 © Erling Berge 2010 6

Step 3 Types of causal mechanisms I

• Structural causation 
– Social structure does have causal impacts that are not 

well understood. In a framework of methodological 
individualism one may say that it limits and orders the 
options that actors can choose from. Hence, variables 
such as age, sex, and place of living can be used as 
proxies for poorly understood causal factors. 

– Budget constraints (time and income constraints) have 
the same character. They limit and orders the options 
that actors can choose from. However, they enter the 
model more through the way the dependent variable is 
constructed, and the kind of link function (linear or 
logistic) used to mediate between observations and 
dependent variable. 
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Step 3 Types of causal mechanisms II

• Individual causation
– Preferences (norms, values, attitudes) may be difficult 

to observe in detail but are assumed to be present

– Resources (income/ capital, education/ human 
capital, access to networks/ social capital) are usually 
measured extensively even if unevenly. Here there 
are budget constraints

– Perception of opportunities will often depend on 
position in social structure

– Beliefs about resources and opportunities are 
important. They may be based on both fact and fiction
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Step 4 Explanatory variables

• All kinds of explanatory variables are 
allowed 

• Make a list of conceivable variables
• Look for direct or indirect indicators for the 

variables. Approximations are allowed 
• Construct new variables where variation 

and codes match as well as possible the 
intended indicator

• Then the first model can be estimated
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Elaborating the model
1. Is the distribution of the residual normal?
2. If no:

i. Curvilinearity? If yes, fix the problem and go back to 
1. Else 

ii. Missing variables? (correlates with both y- and x-
variables)

iii. Heteroscedasticity? If yes, fix the problem and go 
back to 1. (Fixing this may entail transformation to 
symmetry.)

iv. If tests are trustworthy remove obviously irrelevant 
variables and go back to 1

3. If yes: you have a first estimate of your model
4. Consider how it may be improved!
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Basic sources of error
• Errors in theory / model

– Model specification: valid conclusions require 
a correct (true) model

• Errors in the sample 
– Selection bias

• Measurement problems
– Missing cases and measurement errors

– Validity og reliability

• Multiple comparisons 
– Conclusions are valid only for the sample
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Serious errors from the term 
papers of last fall

• Lack of understanding of variables and 
measurement scales 
– Relation to measurement units

– Relation to correlations among variables

– Relation to dummy coding

• Lack of understanding of measurement units 
– Relation to interpretation of results
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Test for Curvilinear Relations
• Testing for curvilinearity in age

– Set age squared = age2

• Remember:
– Age is one substance variable that may be 

represented either by one technical variable 
or by two technical variables (somewhat like 
one variable being represented by different 
ways of coding)

• Substance variable Age is represented by age
• Substance variable Age is represented by age + 

age2
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Testing
• Model 0

– (some variables)

• Model 1
– (some variables) + age

• Model 2
– (some variables) + age + age2

• In model 1 the impact of Age is tested by the t-test 
and the corresponding p-value (there is no 
difference between the substance variable and its 
technical representation) 
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Testing 2

• In model 1 the test may conclude that Age does 
not contribute to the model. If so we go to model 2

• In model 2 the testing of the impact of the 
substance variable Age (represented by age and 
age2) is done by an F-test of Model 2 against 
Model 0 

• The F-test may conclude that Age does not 
contribute to the model. Then we drop both age 
and age2.

• The F-test may conclude that Age (represented 
by age and age2) contributes significantly to the 
model. Then we keep both age and age2
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Testing 3

• In model 1 the test may conclude that Age does 
contribute to the model. If so we may still go to 
Model 2

• If either the t-test of model 1, or the F-test of 
model 2, or both show that Age contributes 
significantly to the model, there are several 
possibilities
– T-test significant, F-test not significant: drop age2, 

keep age
– T-test significant, F-test significant, p-value of age is 

unchanged or higher (compared to model 1) while p-
value of age2 is clearly insignificant: drop age2, keep 
age
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Testing 4
• (continued)

– T-test significant, F-test significant, p-value of age 
improves (compared to model 1): keep age2 no matter 
what p-value for age2 is 

– T-test significant, F-test significant, p-value of age shows 
no significance (compared to model 1) while p-value of 
age2 shows clear significance: keep age2 no matter 
what p-value for age is

– T-test significant, F-test significant, p-value of both age 
and age2 show no significance but are fairly close. Then 
the F-test decides. Keep age2. 

• And remember: age2 never appears alone, always 
with age
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Sample size in logistic regression

Literature cited:
• Long, J. Scott. 1997. Regression Models for 

Categorical and Limited Dependent Variables. 
London: Sage. 

• Peduzzi, Peter, John Concato, Elizabeth 
Kemper, Theodore R. Holford, and Alvan R. 
Feinstein. 1996. A simulation study of the 
number of events per variable in logistic 
regression analysis. Journal of Clinical 
Epidemiology 49 (12):1373-1379.
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Large sample properties

• The good properties of ML estimates of 
binary logistic regression models are large 
sample properties that obtain as sample 
size goes towards infinity. Hence

• A sample needs to be  “large enough”
• What “large enough” means is not clear
• What happens when you have too small a 

sample is largely unknown
• Long (1997) puts 100 cases as an absolute 

lower bound
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Calculation of lower bounds
• A lower bound of 100 must be adjust according to number 

of variables in the model and the distribution of cases on 
the dependent variable. 

• Peduzzi et al. (1996) suggest:
• Let p be the smallest of the proportions of negative or 

positive cases in the population and k the number of 
covariates (the number of independent variables), then the 
minimum number of cases to include is:

• N = 10 k / p
• If the resulting number is less than 100 you should increase 

it to 100 
• Or you may say that the maximum number of variables you 

can include in the model will be 
• k = N*p/10
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Causal analysis I

• Experiment

– Randomized causal impacts (”treatment”) 
provide precise causal conclusions about effects 
(”response”) if there is significant differences in 
the mean response (effect)

– Experiments can be impossible to achieve due to 
• Practical conditions

• Economic constraints

• Ethical judgements

• Instead one tries to obtain quasi-experiments
– Using for example regression analysis
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Causal modelling II

• “path analysis” or “structural equations 
modelling” go back to the 60ies 

• Jöerskog and Sörbom: LISREL
– Use maximum likelihood to estimate model 

parameters maximising fit to the variance-
covariance matrix

– Commonly available in statistical packages 
• Covariance structural modelling
• Structural equation modelling
• Full information maximum likelihood estimation
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Low-Tech approach

• Uses OLS to do simple versions of the structural 
equations models

• The key assumption is the causal ordering of 
variables. In survey data this ordering is 
supplied by theory

• The causal diagram visualize the order of 
causation:
– Causality flows from left to right 
– Intervening variables give rise to indirect effects
– “reverse causation” creates problems
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Path coefficients 
Figure 3
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Some elements in figure 3

The error term from the regression of 
X3 on X1 and X2

√{1-R3.12
2}

Coefficient of determination (R2) from 
the regression of X3 on X1 and X2

R3.12
2

Standardized regression coefficients 
(“beta weight”) from the regression of 
X3 on X1 controlled for X2 and from the 
regression of X3 on X2 controlled for X1

b31.2, b32.1
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The structural model of figure 3

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• X3 = b31.2X1 + b32.1X2

• In structural equations variables and 
coefficients are standardized

• That means that variables have an average 
of 0 and a standard deviation of 1 and that 
coefficients vary between -1 and +1

^
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Direct, Indirect and Total Effects

• Direct effects are the path coefficients 
linking two variables without any 
intervening variable

• Indirect effects equal the product of 
coefficients along any series of causal 
paths that link one variable to another 

• Total effects equal the sum of all direct 
and indirect effects linking two variables
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Indirect effects as products of path coefficients

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• X3 = b31.2X1 + b32.1X2

• Means that we have

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• = bY1.23X1 + bY2.13X2 + bY3.12(b31.2X1 + b32.1X2) 

• = bY1.23X1 + bY2.13X2 + bY3.12b31.2X1 + bY3.12b32.1X2

• = (bY1.23 + bY3.12b31.2)X1 + (bY2.13 + bY3.12b32.1)X2

• Compare compound coefficients to the diagram

^

^
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Path Coefficients = Direct effects

standardized regression coefficient of X3 
on X2, controlling for X1

X2 to X3: b32.1

standardized regression coefficient of X3 
on X1, controlling for X2

X1 to X3: b31.2

standardized regression coefficient of Y 
on X3, controlling for X1 and X2

X3 to Y: bY3.12

standardized regression coefficient of Y 
on X2, controlling for X1 and X3

X2 to Y: bY2.13

standardized regression coefficient of Y 
on X1, controlling for X2 and X3

X1 to Y: bY1.23
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Indirect and total effects

bY2.13 + (b32.1 × bY3.12)X2 to Y:

bY1.23 + (b31.2 × bY3.12)X1 to Y:

Total effects

b32.1 × bY3.12X2 to Y, through X3:

b31.2 × bY3.12X1 to Y, through X3:

Indirect effects
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Adding to multiple regressions

• We learn something new if the indirect 
effects are large enough to have 
substantial interest

• More than two steps of causation tends to 
become very weak
– 0.3*0.3*0.3 = 0.027 

– 0.3 standard deviation change in causal 
variables leads to a 0.027 standard deviation 
change in the dependent variable
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Example of a path diagram

Y3= Livet på
landet
best

Y1= Eiga utd

Y2= Eiga innt

X1= Alder

X2= Kvinne




= 0,36

11= -0,34

12= 0,05

22= 0,32

21= 0,17

31= 0,09

Figur 2.1 Note differences in symbols
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Comment to the figure above
• The  coefficients go from one Y variable 

to another
• The  coefficients go from one X variable a 

Y variable
• The coefficient indexing indicates which 

variables they link. The first index tells the 
dependent variable. The second index 
tells the independent variable 

• The coefficients are standardized (OLS) 
regression coefficients (“beta weights”)
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The structural model of the example

• Ŷ3 = 31X1 + 32X2 + 31Y1 + 32Y2

• Ŷ2 = 21X1 + 22X2 + 21Y1

• Ŷ1 = 11X1 + 12X2

• Ŷ3 = X1  Y1  Y2

• Ŷ2 = X1 + X2 + Y1

• Ŷ1 = X1 + X2
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Direct and indirect effects on “Livet på
landet best” from age

• Direct effect: 31 = 0.09
• Indirect effect by way of “Eiga utd” and “Eiga innt”

• 31 * 11 + 32 * 21 * 11 + 32 * 21
• (*(*(*((*(
• *** *
• 0.0748 + 0.00612 – 0.0085 = 0.07242
• Total effect = 0.09 + 0.07242 = 0.16242
• Increasing age by 1 st. dev. leads to an increase 

of 0.16 st.dev. in the strength of support for “Livet 
på landet best”
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Variables and measurement in structural 
models

• All interval scale variables used in multiple regression 
(including non-linear transformed variables and 
interaction terms) can be included in structural equations 
models

• But interpretation becomes tricky when variables are 
complex. Conditional effect plots are very useful

• Robust, quantile, logit, and probit regression should not 
be used

• Categorical variables should not be used as intervening 
variables

• Scales or index variables can be used as usual in OLS 
regression

Spring 2010 © Erling Berge 2010 36

Concluding on structural equations modelling

• Including factors from factor analysis as explanatory 
variables make it possible to approximate a LISREL type 
analysis

• If assumptions are true LISREL will perform a much 
better and provides more comprehensive estimation, but 
too often assumptions are not true. Then the low-tech 
approach has access to the large toolkit of OLS 
regression for diagnostics and exploratory methods 
testing basic assumptions and discovering unusual data 
points

• Simple diagnostic work sometimes yields the most 
unexpected, interesting and replicable findings from our 
research
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Principal components and factor analysis

• Principal components and factor analysis 
are both methods for data reduction

• They seek underlying dimensions that are 
able to account for the pattern of variation 
among a set of observed variables

• Principal components analysis is a 
transformation of the observed data where 
the idea is to explain as much as possible 
of the observed variation with a minimum 
number of components
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Factor analysis

• Estimates coefficients on - and variable values 
of - unobserved variables (Factors) to explain 
the co-variation among an observed set of 
variables

• The assumption is that a small set of the 
unobserved factors are able to explain most of 
the co-variation

• Hence factor analysis can be used for data 
reduction. Many variables can be replaced by a 
few factors
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Factor analysis
• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ + uk

– k = 1, 2, 3, … , K 

• Symbols 
– K observed variables, Zk ; k=1, 2, 3, … , K
– J unobserved factors, Fj ; j=1, 2, 3, … , J where J<K

– For each variable there is a unique error term, uk, also 
called unique factors while the F factors are called 
common factors

– For each factor there is a standardized regression 
coefficient, lkj, also called factor loading; k refers to 
variable no, j refers to factor no. An index denoting 
case no has been omitted here. 
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Correlation of factors

• Factors my be correlated or uncorrelated
– Uncorrelated: they are then called orthogonal

– Correlated: they are then called oblique

• Factors may be rotated
– Oblique rotations create correlated factors

– Orthogonal rotations create uncorrelated 
factors
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Principal components

• Represents a simple transformation of variables. There 
are as many principal components as there are variables

• Principal components are uncorrelated 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkKFK

• If the last few principal components explain little variation 
we can retain J<K components. Thus Principal 
Components also can be used to reduce data. 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ +  vk

where J<K and
the residual vk has small variance and consist of the 
discarded principal components 
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Principal components vs factor analysis
• Principal components analysis attempts to 

explain the observed variation of the variables
• Factor analysis attempts to explain their inter-

correlations
• Use principal components to generate a 

composite variable that reproduce the maximum 
variance  of observed variables

• Use factor analysis to model relationships 
between observed variables and unobserved 
latent variables and to obtain estimates of latent 
variable values 

• The choice between the two is often blurred, to 
some degree it is a matter of taste
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The number of principal components
• K variables yield K principal components
• If the first few components account for most of the 

variation, we can concentrate on them and discard the 
remaining 

• The eigenvalues of the standardized correlation matrix 
provides a guide here 

• Components are ranked according to eigenvalues
• A principal component with an eigenvalue <1 accounts 

for less variance than a single variable
• Thus we discard components with eigenvalues below 1 
• Another criterion for keeping components is that each 

component should have substantive meaning

Spring 2010 © Erling Berge 2010 44

Eigenvalues and explained variance

• In a covariance matrix the sum of eigenvalues
equals the sum of variances. 

• In a correlation matrix this = K (the number of 
variables) since each standardized variable has 
a variance of 1 

• Thus the sum of eigenvalues of the principal 
components 

• 1 + 2 + 3 + … + K = K and 

• j / K = proportion of variance explained by 
component no j
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How many factor should we retain?

• In principal component analysis factors with 
eigenvalues above 1 is recommended

• In principal factor analysis factors with 
eigenvalues above 0 is recommended

• Procedure:
– Extract initial factors or components

– Rotate to simple structure

– Decide on how many factors to retain

– Obtain and use scores for the retained factors, 
ignoring discarded factors
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Factor scores
• Both principal components and factor analysis 

may be used to compute composite scores 
called factor scores 

• Recall that variables and factors are assumed to 
be related like
– Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkKFK

• Then it is possible to find values cij making 
– Fj = c1jZ1 + c2jZ2 + … + ckjZj + … + cKjZK

• The coefficients cij are the factor score 
coefficients. They come from the regression of 
the factor Fj on the variables 

ˆ
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Rotation to simple structure

• The idea is to transform (rotate) the factors so that 
the loadings on each components make it easier 
to interpret the meaning of the component

• If the loading are close either to 1 or -1 on one 
factor and close to 0 on all others the structure is 
simpler to interpret: we rotate to “simple structure”. 
The rotated factors fit data equally well but are 
simpler to interpret

• Rotations may be
– Orthogonal  (rotation method typically: varimax)
– Oblique       (rotation method typically: oblimin, promax)
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Why rotate?

• Underlying unobserved dimensions may in 
theory be seen as correlated

• Allowing correlated factors may provide 
even simpler structure than uncorrelated 
factors, thus easier to interpret

• All rotations fit data equally well
• Hence the one chosen depends on a 

series of choices done by the analyst
• Try different methods to see if results differ
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Concluding (1)

• Principal components
– transformation of the data, not model based. 

Appropriate if goal is to compactly express 
most of the variance of k variables. Minor 
components (perhaps all except the first) may 
be discarded and viewed as a residual. 

• Factor analysis
– Estimates parameters of a measurement 

model with latent (unobserved) variables. 
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Concluding (2)

• Rotation 
– If we retain more than one factor rotation simplifies 

structure and improves interpretability
• Orthogonal rotation (varimax) maximum polarization given 

uncorrelated factors 
• Oblique rotation (oblimin, promax) further polarization by 

permitting interfactor correlations. The results may be more 
interpretable and more realistic than uncorrelated factors

• Scores 
– Factor scores can be calculated for use in graphs and 

further analysis, based on rotated or unrotated factors 
and principal components 


